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Abstract. The intensive research activities in social data analysis in recent years 

suggest the necessity and great potential of a public social data observatory. To ef-

fectively support a social data observatory, the storage platform must satisfy its spe-

cial requirements for loading and storage of Terabyte-level datasets, as well as effi-

cient evaluation of queries involving analysis of the texts of millions of social 

updates. Traditional inverted indexing techniques do not meet such requirements 

due to their targeted use cases in text retrieval scenarios. To address these problems, 

we propose a general indexing framework, IndexedHBase, to build specially cus-

tomized index structures for facilitating efficient queries, and employ the HBase 

system for distributed data storage. IndexedHBase is used to support the Truthy 

system that collects and analyzes data obtained through the Twitter streaming API. 

To handle the special queries in Truthy, we develop a parallel query evaluation 

strategy that can explore the customized index structures efficiently. We evaluate 

the performance of IndexedHBase on FutureGrid, and compare it with Riak, a 

widely adopted commercial NoSQL database system. The results show that In-

dexedHBase provides a data loading speed that is 6 times faster than Riak, and is 

significantly more efficient in evaluating queries involving large result sets. 

1. Introduction 

Data intensive computing brings challenges in both large-scale batch analysis and 

real-time streaming data processing. To meet these challenges, improvements to 

various levels of cloud storage systems are necessary. Specifically, regarding the 

problem of search in Big Data, using indices to facilitate query evaluation has been 

a well-researched area in the field of database [1], and inverted indices [4] are spe-

cially designed for full-text search. A basic idea is to first build index data-structures 

through a full scan of data and documents and then facilitate fast access to a small 

fraction of the data via indices to achieve highly optimized search performance. 
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Beyond these system features, it is still challenging to enable real-time search 

and efficient analysis over a broader spectrum of social data scenarios. For example, 

[16] discusses the temporal and spatial challenges in context-aware search and anal-

ysis on social media data. FluMapper [17] investigates an interactive map-based 

interface for flu-risk analysis based on near real-time processing of social updates 

collected from the Twitter streaming API [23]. Truthy [5] builds a public social data 

observatory that analyzes and visualizes information diffusion on Twitter, covering 

a broad spectrum of social activities, including presidential elections [9], protest 

events [12][15], meme competition [11] and user influence [10]. This process in-

volves analysis of some general entities and relationships contained in its Terabyte-

level large-scale social dataset, such as tweets, users, hashtags, retweets, and user-

mentions during specific time windows of the social events. 

This chapter describes our research towards building an efficient and scalable 

storage platform for Truthy. Many existing NoSQL databases, such as Solandra 

(now known as DataStax) [21] and Riak [22], support distributed inverted indices 

[4] to facilitate searching text data. However, traditional distributed inverted indices 

are designed for text retrieval applications; they may incur unnecessary storage and 

computation overhead during indexing and query evaluation time, and thus are not 

suitable for handling Truthy queries. For example, how to efficiently evaluate its 

temporal queries involving text search on hundreds of millions of social updates 

remains a challenge. 

We propose IndexedHBase, a general customizable indexing framework on 

HBase [19] as the basis of the storage platform, which allows users to flexibly de-

fine the most suitable index structures to facilitate their queries. Furthermore, based 

on Hadoop MapReduce [18], we implement a parallel query evaluation strategy that 

can make the best use of the customized index structures to achieve efficient eval-

uation of Truthy queries. 

Currently the total size of historical data on Truthy is about 10 Terabytes. At the 

time of this writing, the data rate of the Twitter streaming API is about 45 million 

per day, leading to a growth of ~20GB in the total data size. We develop efficient 

data loading strategies on that can accommodate fast loading of the historical files 

as well as the growing speed of streaming data. We evaluate the performance of 

IndexedHBase on FutureGrid [7]. Our preliminary results show that compared with 

Riak, a widely adopted commercial NoSQL database system, IndexedHBase pro-

vides significantly (6 times) faster data loading speed while requiring much less 

storage size, and is more efficient (by multiple times) in evaluating queries derived 

from large result sets. 

The rest of this chapter is organized as follows. Section 2 analyzes the character-

istics of data and queries in Truthy. Section 3 describes the architecture of In-

dexedHBase, and explains the design and implementation of its data loading, index-

ing, and query evaluation strategies. Section 4 evaluates the performance of 

IndexedHBase and compares it with Riak. Section 5 discusses related work. Section 

6 concludes and prospects our future work. 
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2. Data and Query Patterns 

The entire dataset of Truthy consists of two parts: historical data in .json.gz files, 

and real-time data coming from the Twitter stream. Fig. 1 illustrates a sample data 

item, which is a structured JSON string containing information about a tweet and 

the user who posted it. Furthermore, if the tweet is a retweet, the content the original 

tweet is also included in a “retweeted_status” field. For hashtags, user-mentions, 

and URLs contained in the text of the tweet, an “entities” field is included to give 

more detailed information, such as the ID of the mentioned user, and the expanded 

URLs. 

 

Fig. 1. An example tweet in JSON format 

Truthy uses the concept of “memes” to represent sets of related tweets corre-

sponding to specific discussion topics, communication channels or information 

sources shared among Twitter users. Memes can be identified through elements 

contained in the texts of tweets, such as keywords, hashtags (e.g., #euro2012), user-

mentions (e.g., @youtube), and URLs. Truthy supports a set of temporal queries for 

extracting and generating various information about tweets, users, and memes. 

These queries can be categorized into two subsets. The first contains basic queries 

for getting the IDs or contents of tweets created during a given time window based 

on their text or user information, including: 

get-tweets-with-meme (memes, time_window) 

get-tweets-with-text (keyword, time_window) 

get-tweets-with-user (user_id, time_window) 

get-retweets (tweet_id, time_window) 
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For the parameters, “time_window” is given in the form of a pair of strings mark-

ing the start and end points of a time window, e.g., [2012-06-08T00:00:00, 2012-

06-23T23:59:59]. “memes” is given as a list of hashtags, user-mentions, and URLs. 

“memes” and “keyword” may contain wildcards to specify prefix queries, e.g., 

“#occupy*”, which will match all tweets containing hashtags starting with “#oc-

cupy”.  

The second subset contains queries for generating required information based on 

analysis of the tweets returned from the first subset of queries, including timestamp-

count, user-post-count, meme-post-count, meme-cooccurrence-count, get-re-

tweet-edges, get-mention-edges (meme(s), time_window). Here for example, 

“timestamp-count” returns the number of tweets concerning the given memes 

posted on each day within the time window. Each “edge” has 3 components: a 

“from” user ID, a “to” user ID, and a weight indicating how many times the “from” 

user has retweeted the tweets from the “to” user, or mentioned the “to” user in 

his/her tweets. 

The most significant characteristic of these queries is that they all take a time 

window as a parameter. This originates from the temporal nature of social activities. 

In order to evaluate these queries, an obvious brute-force solution is to scan the 

whole dataset, try to match the content and creation time of each tweet with the 

query parameters, and generate the results using information contained in the 

matched tweets. However, due to the drastic difference between the size of the en-

tire dataset and the size of the query result, this strategy is prohibitively expensive. 

For example, the total number of tweets for 06/01/2012 – 06/20/2012 is 

626,958,383, while the number of tweets containing the most popular meme 

“@youtube” is only 1,906,108, which is smaller by more than two orders of mag-

nitude. In order to efficiently locate the related tweets by their text content, a natural 

strategy is to utilize inverted indices [4], which are supported by many existing dis-

tributed NoSQL database systems, such as Solandra [21] and Riak [22]. However, 

traditional distributed inverted indices do not provide the best solution for Truthy 

queries for the following reasons: 

First, traditional inverted indices are mainly designed for text retrieval applica-

tions, where the main goal is to efficiently find the top K (with a typical value of 20 

or 50 for K) most relevant text documents regarding a query composed of a set of 

keywords. To achieve this goal, information such as frequency and position of key-

words in the documents is stored and used for computing relevance scores between 

documents and keywords during query evaluation. In contrast, queries in Truthy are 

designed for analysis purposes, meaning that they have to process all the related 

tweets, instead of the top K most relevant ones, to generate the results. Therefore, 

data about frequency and position are extra overhead for the storage of inverted 

indices, the same for relevance scoring in the query evaluation process. The query 

evaluation performance can be further improved by removing these items from tra-

ditional inverted indices. 

Second, query execution plans using traditional inverted indices are not efficient 

enough for handling Truthy queries. Fig. 2 illustrates a typical query execution plan 
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for “get-tweets-with-meme” using two separate indices on memes and creation time 

of tweets. This plan uses the meme index to find the IDs of all tweets containing the 

given memes, and then utilizes the time index to find the set of tweet IDs within the 

given time window, and finally computes the intersection of these two sets to get 

the results. Assuming the size of the posting lists for the given memes to be m, and 

the number of tweet IDs coming from the time index to be n, the complexity of the 

whole query evaluation process will be O(m + n) = O(max(m, n)), using a merge-

based or hashing-based algorithm for the intersection operation. However, due to 

the characteristics of the dataset in Truthy, there is normally an orders-of-magnitude 

difference between m and n, as discussed above. As a result, although the size of 

the query result is bounded by min(m, n), a major part of query evaluation time is 

actually spent on scanning and checking irrelevant entries of the time index. In clas-

sic text search engines, techniques such as skipping or frequency-ordered inverted 

lists [4] may be utilized to quickly return the top K most relevant results without 

evaluating all the related tweets. However, such optimizations are not applicable in 

Truthy due to the analysis purpose of the queries. Furthermore, in case of high cost 

estimation for accessing the time index, the search engine may choose to only use 

the meme index, and generate the results by checking the contents of related tweets. 

However, a big part of time is still wasted in checking irrelevant tweets falling out 

of the given time window. The query evaluation performance can obviously be fur-

ther improved if the unnecessary scanning cost can be avoided. 

 

Fig. 2. A typical query execution plan using indices on meme and creation time 

We suggest using a customized index structure in IndexedHBase, as illustrated 

in Fig. 3. It merges the meme index and time index, and replaces the frequency and 

position information in the posting lists of the meme index with creation time of 

corresponding tweets. Facilitated by this customized index structure, the query eval-

uation process for “get-tweets-with-meme” can be easily implemented by going 

through the index entries related to the given memes, and selecting the tweet IDs 

associated with a creation time within the given time window. The complexity of 

the new query evaluation process is O(m), which is significantly lower than 

O(max(m, n)). To support such index structures, IndexedHBase provides a general 

customizable indexing framework, which will be explained in Section 3. 
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Fig. 3. A customized meme element index structure 

3. Design and Implementation of IndexedHBase 

3.1 System Architecture 

Fig. 4 illustrates the system architecture of IndexedHBase. HBase is used to host 

the entire Truthy dataset and related indices with two sets of tables: data tables con-

taining original data, and index tables containing customized index structures for 

query evaluation. The customized indexing framework supports two mechanisms 

for building index tables: online indexing that indexes data on the fly when they are 

loaded into data tables, and batch indexing that is used for building new index struc-

tures based on existing data tables. Based on the customizable indexing framework, 

two data loading strategies are supported to respectively load historical data and 

streaming data. The parallel query evaluation strategy provides efficient evaluation 

mechanisms for all the Truthy queries, and is used by upper level Truthy applica-

tions to generate various statistics and visualizations.  

 

Fig. 4. System Architecture of IndexedHBase 

3.2 Customizable Indexing Framework 

Table Schemas on HBase 

Based on the extendible “BigTable” data model [6] supported by HBase, we design 

the table schemas in Fig. 5 for Truthy. Tables are managed in units of months – one 
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set of tables are created for each month’s data. This management has two benefits. 

First, the loading of streaming data only changes the tables relative to the current 

month and does not impact tables for previous months. Secondly, during query eval-

uations, the amount of index data and original data that needs to be scanned is lim-

ited by the months covered under the time window parameter. 

Some details about these tables need to be clarified before proceeding further. 

Each table contains only one column family, e.g., “details” or “tweets”, on account 

of data in the columns being mostly accessed together. Also the user table uses a 

concatenation of user ID and tweet ID as the row key because Truthy requires keep-

ing track of changes in user metadata associated with each tweet. Finally, besides 

the text index table, a separate meme index table is created to index the hashtags, 

user-mentions, and URLs contained in the tweet texts. This is because some special 

cases, such as expandable URLs and reused screen names in user-mentions, cannot 

be handled properly by the text index. The meme index table uses hashtags, user-

mentions, and URLs as row keys, and each row contains a different number of col-

umns. The name of each column is the ID of one tweet containing the corresponding 

meme, and the timestamp of the cell value marks the creation time of the tweet. The 

structures of other index tables can be similarly inferred from Fig. 5. 

 

Fig. 5. Table schemas used in IndexedHBase for Truthy 

Using HBase tables to implement customized index structures has the following 

advantages: 

(1) The flexible data model of HBase is suitable for storing the entries of our cus-

tomized index structures. If needed, users can further extend the existing struc-

tures by embedding any additional information in the cell value of each column. 

(2) Based on the distributed architecture of HBase, we can achieve high availabil-

ity for index data and high performance for distributed index access. 

(3) Since rows in tables are sorted by row keys, prefix queries can be easily com-

pleted through range scans over the corresponding index tables. 
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(4) Since each index structure is implemented as a separate table, it is easy to re-

build an index when its structure is modified, or to build a new customized 

index structure for handling new queries, without having to reload the dataset. 

Since the data access pattern in Truthy is mostly write-once-read-many, having 

multiple index tables will not incur any maintenance cost beyond the initial 

loading and indexing step. 

(5) Based on the original support for Hadoop MapReduce on HBase, it is possible 

to complete efficient parallel analysis on the index data to generate useful meas-

urements, such as meme popularity distribution used in [11]. 

Customizable Indexer Implementation 

In order to generate records for the index tables, IndexedHBase implements a cus-

tomizable indexer library, shown in Fig. 6. Users can customize their index tables 

by defining what to use as keys and what to use as entries in the index configuration 

file. The customizable indexer automatically generates index table records accord-

ing to the configuration file, and inserts them into index tables upon the client ap-

plication’s request. 

 

Fig. 6. Components of customizable indexer 

Fig. 7 gives an example of the index configuration file in XML format. The 

whole file contains multiple “index-config” elements. Each element contains the 

mapping information between one source table and one index table. Users can em-

ploy this element to flexibly define how to generate records for the index table based 

on a given row from the source table. To deal with even more complicated index 

structures, they can also implement a user defined customizable indexer on their 

own, and specify to use this indexer by setting the “indexer-class” element. 

The general customizable indexer and the user defined customizable indexer 

must both implement a common interface, which declares one “index()” method, as 

presented in Fig. 8. This method takes the name and row data of a source table as 

parameters, and returns a map as a result. The key of each map entry is the name of 

one index table name, and the value is a list of records for that index table. 

Upon initialization, the general customizable indexer reads the index configura-

tion file, and analyzes each “index-config” element. If a user defined indexer class 
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is specified, a corresponding indexer instance will be created. When “index()” is 

invoked during runtime, the general customizable indexer will go through all the 

“index-config” elements related to the source table, and generate records for each 

related index table, either by following the rules defined in “index-config” or by 

invoking a user-defined indexer. Finally, all index table names and records are 

added to the result map and returned to the client application. 

 

Fig. 7. An example customized index configuration file 

 

Fig. 8. Pseudocodes for the “CustomizableIndexer” interface 

Online Indexing Mechanism and Batch Indexing Mechanism 

IndexedHBase provides two means of indexing data in the tweet table and user ta-

ble: online indexing and batch indexing. The online indexing mechanism is imple-

mented through the “insert()” method of the general customizable indexer, dis-

played in Fig. 6. The client application invokes the “insert()” method of the general 

customizable indexer to insert one row to a source table. The indexer will first insert 

the given row to the source table, and then generate index table records for this row 

by invoking “index()”, and insert them to the corresponding index tables. Therefore, 

from the client application’s perspective, data in the source table are indexed 

“online” when first inserted into the table. 

The batch indexing mechanism is designed for generating new customized index 

tables after all the data have been loaded into the source table. This mechanism is 

implemented as a “map-only” MapReduce job using the source table as input. The 

job accepts a source table name and an index table name as parameters, and starts 

multiple mappers to index data in the source table in parallel, each processing one 

region of the table. Each mapper works as a client application to the general cus-

tomizable indexer, and creates one indexer instance at its initialization time. The 
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indexer is initialized using the given index table name so that when “index()” is 

invoked, it will only generate index records for that single table. The “map()” func-

tion takes a <key, value> pair as input, where “key” is a row key in the source table 

and “value” is the corresponding row data. For each row of the source table, the 

mapper uses the general customizable indexer to generate index table records and 

write these records as output. All output records are handled by the table output 

format, which will automatically insert them into the index table. 

3.3 Data Loading Strategies 

IndexedHBase supports distributed loading strategies for both streaming data and 

historical data in Truthy. Fig. 9 shows the architecture of the streaming data loading 

strategy. In this strategy, one or multiple distributed loaders are running concur-

rently. All loaders are connected to the same stream using the Twitter streaming 

API, and each is responsible for loading a portion of the data. Each loaders is as-

signed a unique loader ID, and works as a client application to the general custom-

izable indexer. Upon receiving a tweet JSON string from the stream, the loader will 

first take the tweet ID and do a modulus operation over the total number of loaders 

in the system. If the result equals its loader ID, it will load the tweet to In-

dexedHBase. Otherwise the tweet is skipped. To load a tweet, the loader first gen-

erates records for the tweet table and user table based on the JSON string, then loads 

them into the tables by invoking the “insert()” method of the general customizable 

indexer, which will complete online indexing and update all the data tables as well 

as relevant index tables. 

 

Fig. 9. Streaming data loading strategy 

The historical data loading strategy is implemented as a MapReduce program. 

Since tables are managed in the unit of months, one separate MapReduce job is 

launched to load the historical .json.gz files for each month, and multiple jobs can 
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be running simultaneously in the system. Each one will start multiple mappers in 

parallel, and every mapper is responsible for loading data from one file. At running 

time, each line in the .json.gz file is given to the mapper as one input, which contains 

the JSON string of one tweet. The mapper first creates records for the tweet table 

and user table based on the JSON string and then invokes the general customizable 

indexer to get all the related index table records. All table records are handled by 

the multi-table output format, which automatically inserts them into the related ta-

bles. Finally, if the JSON string contains a “retweeted_status”, the corresponding 

substring will be extracted and processed in the same way. 

3.4 Parallel Query Evaluation Strategy 

Based on the customized index tables generated by the data loading and indexing 

process, we develop a two-phase parallel query evaluation strategy viewable in Fig. 

10. For any given query, the first phase uses multiple threads to find the IDs of all 

related tweets from the index tables in relevant months, and saves them in a series 

of files containing a fixed number (e.g., 30000) of tweet IDs. The second phase 

launches a MapReduce job to process the tweets in parallel and extract the necessary 

information to complete the query. For example, to evaluate “user-post-count”, each 

mapper in the job will access the tweet table to figure out the user ID corresponding 

to each tweet ID, count the number of tweets by each user, and output all counts 

when it finishes. The output of all the mappers will be processed by multiple reduc-

ers in parallel to finally generate the total tweet count of each user ID. Implementa-

tion of the other queries can be similarly inferred. 

Two special aspects of the query evaluation strategy worth further discussions. 

First, as described in Section 2, prefix queries can be constructed by using pa-

rameters such as “#occupy*”. For this type of queries, IndexedHBase provides two 

options for getting the related tweet IDs in the first phase. One option is to simply 

complete a sequential range scan of rows in the corresponding index tables and get 

all qualified tweet IDs. The other option is to use a MapReduce program to complete 

parallel scanning over the range of rows. This option is only faster for parameters 

covering a large range spanning multiple regions of the index table. When using 

prefix queries, users are allowed to specify which option to use based on their esti-

mation of the covered range size. 

Next, the number of tweet IDs in each tweet ID file actually implies a tradeoff 

between parallelism and scheduling overhead. When this number is set lower, more 

mappers will be launched in the parallel evaluation phase, which means the amount 

of work done by each mapper decreases while the total task scheduling overhead 

increases. The optimal number to use actually depends on the total number of re-

lated tweets and the amount of resources available in the infrastructure. Therefore, 

we set the default value of this number to 30,000 and leave it configurable by the 

user when they run specific queries. 
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Fig. 10. Two-phase parallel evaluation process for an example “user-post-count” query 

4. Performance Evaluation Results and Comparison with Riak 

4.1 Testing Environment Configuration 

We use 8 nodes on the Bravo cluster of FutureGrid to complete tests for both In-

dexedHBase and Riak. The hardware configuration for all eight nodes is listed in 

Table 1. Each node runs CentOS 6.4 and Java 1.7.0_21. For IndexedHBase, Hadoop 

1.0.4 and HBase 0.94.2 are used. One node is used to host the HDFS headnode, 

Hadoop jobtracker, Zookeeper, and HBase master; the other 7 are used to host 

HDFS datanodes, Hadoop tasktrackers, and HBase region servers. Data replication 

level is set to 2 on HDFS. The configuration details of Riak will be given in Section 

4.2. Besides Bravo, we also use the Alamo HPC cluster of FutureGrid to test the 

scalability of the historical data loading strategy of IndexedHBase, since Alamo can 

provide a larger number of nodes through dynamic HPC jobs. Software configura-

tion of Alamo is mostly the same as Bravo. 

Table 1. Per-node configuration on Bravo and Alamo Clusters 

Cluster CPU RAM Hard 

Disk 

Network 

Bravo 8 * 2.40GHz (Intel Xeon E5620) 192G 2T 40Gb InfiniBand 

Alamo 8 * 2.66GHz (Intel Xeon X5550) 12G 500G 40Gb InfiniBand 

4.2 Configuration and Implementation on Riak 

Riak is a distributed NoSQL database for storing data in the form of <key, value> 

objects. It organizes distributed nodes based on a P2P architecture with no central 
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servers, and distributes data objects among different nodes using consistent hashing 

over the keys. Data are replicated to achieve high availability, and failures are han-

dled through a “hinted handoff” mechanism among neighboring nodes. 

Riak supports various mime types for the value of data objects, including JSON, 

plain text, Erlang binaries, etc. It provides a “Riak Search” module that can build 

distributed inverted indices on data objects for full-text search purposes. Users can 

use buckets to organize their data objects, and configure indexed fields on the 

bucket level. Besides basic inverted indexing functionality, Riak supports a special 

feature called “inline fields.” If a field is specified as an “inline” field, its value will 

be attached to the document IDs in the related posting lists, as illustrated in Fig. 11. 

Similar to our customized index tables in IndexedHBase, inline fields can be 

used to carry out an extra filtering operation to speed up queries involving multiple 

fields. However, they are different in two basic aspects: 

For starters, support for inline fields is still an extension to traditional inverted 

indices, which means overhead such as frequency information and document scor-

ing is still inevitable in Riak Search. 

Secondly, customizable index structures are totally flexible in the sense that the 

structure of each index can be independently defined to contain any subset of fields 

from the original data. In contrast, if one field is defined as an inline field in Riak 

Search, its value will be attached to the posting lists of the indices of all the other 

indexed fields, regardless of whether it is useful. As a demonstration of this prob-

lem, the “sname index table” in Fig. 5 uses the creation time of user accounts as 

timestamps, while the “meme index table” uses creation time of tweets. Such flex-

ibility is not achievable on Riak – users can attach similar information to the indices 

by specifying the creation time of user accounts and tweets as two separate inline 

fields, but that will obviously result in further unnecessary storage overhead. 

 

Fig. 11. An example of inline field (created_at) in Riak 

In our tests, all 8 nodes of Bravo are used to construct a Riak ring. Each node 

runs Riak 1.2.1, using LevelDB as the storage backend. We create two different 

buckets to index data with different search schemas. Data replication level is set to 

2 on both buckets. Within each bucket, <key, value> pairs are employed to directly 

store the tweet ID and JSON string of each tweet. The original JSON string is ex-

tended with an extra “memes” field, which contains all the hashtags, user-mentions, 

and URLs in the tweet, separated by a ‘\t’ character. Riak search is enabled on both 

buckets to facilitate query evaluation, and the “user_id”, “memes”, “text”, “re-

tweeted_status_id”, “user_screen_name”, and “created_at” fields are indexed. Spe-

cifically, “created_at” is defined as a separate indexed field on one bucket, and as 

an “inline only” field on the other bucket, meaning that it does not have a separate 
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index but is stored together with the entries of other indices to enable inline filtering 

for queries on the other fields. 

Riak provides a lightweight MapReduce framework for users to query the data 

by defining MapReduce functions in JavaScript. Furthermore, Riak supports 

MapReduce over the results of Riak Search. We use this feature to implement 

Truthy Queries, and Fig. 12 shows an example query implementation. When this 

query is submitted, Riak will first use the index on “memes” to find related tweet 

objects (as specified in the “input” field), then apply the map and reduce functions 

to these tweets (as defined in the “query” field) to get the final result. 

 

Fig. 12. An example Truthy query implementation on Riak 

4.3 Data Loading Performance 

Historical Data Loading Performance 

We use all the .josn.gz files of June 2012 to test the historical data loading perfor-

mance of IndexedHBase and Riak. The total data size is 352GB. On IndexedHBase, 

a MapReduce job is launched for historical data loading, with each mapper pro-

cessing one file. On Riak, all 30 files are distributed among 8 nodes of the cluster, 

so each node ends up with 3 or 4 files. Then an equal number of threads per node 

were created to load all the files concurrently to the bucket where “created_at” is 

configured as an inline field. Threads continue reading the next tweet, apply pre-

processing with the “created_at” field and “memes” field, and then send the tweet 

as an object of mime type “JSON” to the Riak server, which will automatically 

index all the fields as defined in the search schema. 

Table 3. Historical data loading performance comparison 

 Loading 

time 

(hours) 

Loaded 

total data 

size (GB) 

Loaded original 

data size (GB) 

Loaded 

index data 

size (GB) 

Riak 294.11 3258 2591 667 

IndexedHBase 45.47 1167 955 212 

Riak / IndexeHBase 6.47 2.79 2.71 3.15 
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Table 3 summarizes the data loading time and loaded data size on both platforms. 

We can see that IndexedHBase is over 6 times faster than Riak in loading historical 

data, and uses significantly less disk space for storing the data. Considering the 

original file size of 352GB and a replication level of 2, the storage space overhead 

for index data on IndexedHBase is moderate. 

We analyze these performance measurements below. By storing data with tables, 

IndexedHBase applies a certain degree of data model normalization, and thus avoids 

storing some redundant data. For example, many tweets in the original .json.gz files 

contain retweeted status, and many of them are retweeted multiple times. On In-

dexedHBase, even if a tweet is retweeted repeatedly, only one record is kept for it 

in the tweet table. On Riak, such a “popular” tweet will be stored within the JSON 

string of every corresponding retweet. The difference in loaded index data size 

clearly demonstrates the advantage of having a fully customizable indexing frame-

work. By avoiding frequency and position information and only incorporating use-

ful fields in the customized index tables, IndexedHBase saves 455GB of disk space 

in storing index data, which is more than 1/3 the total loaded data size of 1167GB. 

Also note that IndexedHBase compresses table data using Gzip, which generally 

provides a better compression ratio than Snappy used in Riak. 

The difference in loaded data size explains only a part of the gap in total loading 

time. Two other major reasons are: 

(1) On IndexedHBase, the loaders are responsible for generating both data tables 

and index tables. Therefore, the JSON string of each tweet is parsed only once 

when it is read from the .json.gz files and converted to table records. On Riak, 

since indexing is done by Riak servers instead of the loaders, the JSON string 

of each tweet is actually parsed twice – first by the loaders for preprocessing, 

and again by the server for extracting indexed fields. 

(2) When building inverted indices, Riak not only uses more space to store the 

frequency and position information, but also spends more time collecting such 

information. Therefore, the customized index structures on IndexedHBase not 

only reduce disk storage requirement, but also lead to a faster loading speed. 

Scalable Historical Data Loading on IndexedHBase 

We test the scalability of historical data loading on IndexedHBase with the Alamo 

cluster of FutureGrid. In this test, we fix the dataset to files for two months, May 

2012 and June 2012, and measure the total loading time at different cluster sizes 

with 16, 24, and 32 data nodes. The results are illustrated in Fig. 13. When the clus-

ter size is doubled from 16 to 32 data nodes, the total loading time drops from 142.72 

hours to 93.22 hours, which implies a sub-linear scalability. Due to concurrent ac-

cess from the mappers of the historical data loading jobs to HBase region servers, 

it is almost impossible to get an ideal linear scalability. Nonetheless, our results here 

clearly demonstrate that we can get more system throughput and faster data loading 

speed by adding more nodes to the cluster. 
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Fig. 13.  Historical data loading scalability 

to cluster size 

 

Fig. 14.  Results for streaming data load-

ing test 

Streaming Data Loading Performance on IndexedHBase 

The purpose of streaming data loading tests is to verify that IndexedHBase can pro-

vide enough data throughput to accommodate the growing data speed of the Twitter 

streaming API. To test the performance of IndexedHBase for handling potential 

data rates even faster than the current streams, we design a simulation test using a 

recent .json.gz file for July 03, 2013. In this test, we vary the number of distributed 

streaming loaders and test the system data loading speed against different number 

of loaders. For each case, the whole 2013-07-03.json.gz file is split into the same 

number of fragments with equal size, which are then distributed evenly across all 

the nodes. One loader is started to process each fragment on the same node. The 

loader reads data from the stream of the local file fragment rather than Twitter 

streaming API. So this test measures how the system performs when each loader 

gets an extremely high incoming data rate that is equal to local disk I/O speed. 

Fig. 14 shows the total loading time when the number of distributed loaders in-

creases by powers of 2 from 1 to 16. Once again, concurrent access to the fixed 

number of HBase region servers results in a decrease in speed-up as the number of 

loaders is doubled each time. Specifically, the system throughput is almost saturated 

when we have 8 distributed loaders. For the case of 8 loaders, it takes 3.85 hours to 

load all 45,753,194 tweets for July 3, 2013, indicating the number of tweets that can 

be processed per day on 8 nodes is about 6 times the current daily data rate. There-

fore, IndexedHBase can easily handle the streaming data load in Truthy. In the case 

of vastly accelerated data rates, we can always increase the system throughput by 

adding more nodes. 

4.4 Query Evaluation Performance 

Separate Index Structures vs. Customized Index Structures 
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As analyzed in Section 2, one major purpose of using customized index structures 

is to achieve lower query evaluation complexity than building traditional inverted 

indices on separate data fields. To verify this, we use a simple “get-tweets-with-

meme” query to compare the performance of IndexedHBase and a solution using 

separate indices on the fields of memes and tweet creation time, which is imple-

mented through the Riak bucket where “created_at” is defined as a separately in-

dexed field instead of an inline field. 

Fig. 15. Query evaluation time with sepa-

rate meme and time indices (Riak) 
Fig. 16. Query evaluation time with cus-

tomized meme index (IndexedHBase) 

In this test, we load the first 4 days’ data of June 2012 to both IndexedHBase and 

the Riak bucket and measure the query evaluation time with different memes and 

time windows. For memes, we choose “#usa”, “#ff”, and “@youtube”, each con-

tained in a different subset of tweets. “#ff” is a popular hashtag on Twitter, meaning 

“follow Friday”. For each meme, we use 3 different time windows with a varied 

length of 1 to 3 hours. Queries in this test only return tweet IDs – they don’t launch 

an extra MapReduce phase to get the tweets’ content. Fig. 15 and 16 present the 

query evaluation time for each indexing strategy. As shown in the results, using the 

customized meme index table, IndexedHBase not only achieves a query evaluation 

speed that is tens to hundreds of times faster, but also demonstrates a different pat-

tern in query evaluation time. When separate meme index and creation time index 

are used, the query evaluation time mainly depends on the length of time window; 

the meme parameter has little impact. In contrast, when customized meme index is 

used, the query evaluation time mainly depends on the meme parameter. For the 

same meme, the evaluation time only increases marginally as the time window gets 

longer. These observations verify our theoretical analysis in Section 2. 

Query Evaluation Performance Comparison 

This set of tests is designed to compare the performance of Riak and IndexedHBase 

for evaluating queries involving different number of tweets and different result 

sizes. Since using separate indices has proven inefficient on Riak, we choose to test 

the query implementation using “created_at” as an inline field. Queries are executed 

on both platforms against the data loaded in the historical data loading tests. For 
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query parameters, we choose one popular meme “#euro2012”, along with a time 

window with a varied length of 3 hours to 16 days. The start point of the time win-

dow is fixed at 2012-06-08T00:00:00, and the end point is correspondingly varied 

exponentially from 2012-06-08T02:59:59 to 2012-06-23T23:59:59. This time pe-

riod covers a major part of the 2012 UEFA European Football Championship. 

The queries can be grouped into 3 categories based on the manner in which they 

are evaluated on Riak and IndexedHBase: 

(1) No MapReduce on either Riak or IndexedHBase 

The “meme-post-count” query falls into this category. On IndexedHBase, query 

evaluation is done by simply going through the rows in meme index tables for each 

meme in the query and counting the number of qualified tweet IDs. In case of Riak, 

since there is no way to directly access the index data, this is accomplished by issu-

ing an HTTP query for each meme to fetch the “id” field of matched tweets. 

Fig. 17 shows the query evaluation time on Riak and IndexedHBase. As the time 

window gets longer, the query evaluation time increases for both. However, the ab-

solute evaluation time is much shorter for IndexedHBase, because Riak has to spend 

extra time to retrieve the “id” field. 

  

Fig. 17. Query evaluation time for 

“meme-post-count” 

Fig. 18. Query evaluation time for 

“timestamp-count” 

(2) No MapReduce on IndexedHBase; MapReduce on Riak 

“timestamp-count” falls under this category. Inferring from the schema of the 

meme index table, this query can also be evaluated by only accessing the index data 

on IndexedHBase. On Riak, it is implemented with MapReduce over Riak search 

results, where the MapReduce phase completes the timestamp counting based on 

the content of the related tweets. Fig. 18 shows the query evaluation time on both 

platforms. Since IndexedHBase does not need to analyze the content of the tweets 

at all, its query evaluation speed is orders of magnitude faster than Riak. 

(3) MapReduce on both Riak and IndexedHBase 

Most queries require a MapReduce phase on both Riak and IndexedHBase. Fig. 

19 shows the query evaluation time for several of these. An obvious trend is that 

Riak is faster on queries involving a smaller number of related tweets and a small 

result set, but IndexedHBase is significantly faster on queries involving a larger 

number of related tweets and results. Table 4 lists the results sizes for “get-tweets-
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with-meme” (row 1) and “get-mention-edges” (row 2). The other queries have a 

similar pattern in result sizes. 

 

Fig. 19. Query evaluation time for queries requiring MapReduce on both platforms 

Table 4. Result sizes for get-tweets-with-meme and get-mention-edges 

3-hour 6-hour 12-hour 1-day 2-day 4-day 8-day 16-day 

1287 2539 9342 87596 144575 234643 434043 606062 

673 1367 4885 31330 49265 80547 145498 207783 

The main reason for the performance difference observed is the different char-

acteristics of the MapReduce framework on these two platforms. IndexedHBase re-

lies on Hadoop MapReduce, which is designed for fault tolerant parallel processing 

of large batches of data. It implements the full semantics of the MapReduce com-

puting model and applies a heavyweight initialization process for setting up the 

runtime environment on the worker nodes. Hadoop MapReduce uses local disks on 

worker nodes to save intermediate data and does grouping and sorting before pass-

ing them to reducers. A job can be configured to use zero or multiple reducers. 

By comparison, the MapReduce framework on Riak is designed for lightweight 

use cases where users can write simple query logic with JavaScript and get them 

running on the data nodes quickly without a complicated initialization process. 

There is always only one reducer running for each MapReduce job. Intermediate 

data are transmitted directly from mappers to the reducer without being sorted or 

grouped. The reducer relies on its memory stack to store the whole list of interme-

diate data, and thus has the risk of crashing for large intermediate data sizes. Fur-

thermore, the default timeout of the reducer is set to 5 seconds, and we actually had 
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to change this parameter in the source code and recompile Riak to get some of the 

above queries working. 

Since most queries in Truthy use time windows at the level of weeks or months, 

IndexedHBase is more suitable for the queries above. 

Improving Query Evaluation Performance with Modified Index Structures 

One advantage of IndexedHBase is that it can accept dynamic changes to the index 

structures to achieve more efficient query evaluation. To verify this, we extend the 

meme index table to also include user IDs of tweets in the cell values, as illustrated 

in Fig. 20. Using this new index structure, IndexedHBase is able to evaluate the 

“user-post-count” query by only accessing index data. 

 

Fig. 20. Extended meme index table schema 

We test this schema change on the tables for the 2012-06 dataset. We used the 

batch indexing mechanism of IndexedHBase to rebuild the meme index table, which 

took 3.89 hours. The table size increased from 14.23GB to 18.13GB, which is 

27.4% larger. Fig. 21 illustrates the query evaluation time comparison. Obviously, 

query implementation using the new index structure is faster by more than an order 

of magnitude. In cases where “user-post-count” is frequently used, the query eval-

uation speed improvement is definitely worthy the storage overhead. 

 

Fig. 21. Query evaluation time comparison with modified meme index table schema 
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5. Related Work 

From the perspective of [16], our current work on IndexedHBase tries to address 

the temporal challenge in analysis scenarios of social data. References in [16] pro-

vides a more complete list of related work about temporal and spatial queries in-

volving social data. 

Our customizable index structures share similar inspiration to multiple-column 

indices used in relational databases, but index a combination of full-text and primi-

tive-type fields. Compared with traditional inverted indices [4], IndexedHBase pro-

vides more flexibility about what to use as keys and entries, so as to achieve more 

efficient query evaluation with less storage and computation overhead. 

Solandra (DataStax) [21] and Riak [22] are two typical NoSQL database systems 

that support distributed inverted indices for full-text search. Specifically, Solandra 

is based on Cassandra, which uses a similar data model to HBase. Similar to Riak, 

Cassandra also employs a P2P architecture to support scalable data storage, and 

relies on data replication to achieve fault-tolerance. As discussed in Section 2, in-

verted indices on Solandra and Riak are designed for text retrieval applications, and 

thus not suitable for handling Truthy quries. 

Google’s Dremel [8] achieves efficient evaluation of aggregation queries on 

large-scale nested datasets by using distributed columnar storage and multi-level 

serving trees. Moreover, Power Drill [13] explores special caching and data skip-

ping mechanisms to provide even faster interactive query performance for certain 

selected datasets. Percolator [3] replaces batch indexing system with incremental 

processing for Google search. Inspired by Dremel [8] and Power Drill [13], we will 

consider splitting the tweet table into more column families for even better query 

evaluation performance. On the other hand, our customizable indexing strategies 

could also potentially help Dremel for handling aggregation queries with highly se-

lective operations. 

Discretized Streams [14] proposes a fault-tolerant distributed processing model 

for streaming data by breaking continuous data streams into small batches and then 

applying existing fault-tolerance mechanisms used in batch processing frameworks. 

Ideas in [14] will be useful for our next step on developing a fault-tolerant streaming 

data processing framework for Truthy. Since streaming data are mainly involved in 

the loading and indexing phase, simpler failure recovery mechanisms may be more 

suitable. 

6. Conclusions and Future Work 

We describe a use case study about building an efficient and scalable storage plat-

form, IndexedHBase to support the Truthy social data observatory. As a result of 

our experimentation, we came to some interesting conclusions. 
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For starters, parallelization and indexing are key factors in addressing the chal-

lenges brought by the sheer data size and temporal queries of social data observato-

ries. In particular, parallelization should be explored through every stage of data 

processing, including loading, indexing, and query evaluation. 

Furthermore, index structures should be flexible and customizable, rather than 

static, to effectively take advantage of the special characteristics of the dataset and 

queries and achieve the best query evaluation performance at the cost of less storage 

and computation overhead. In order to achieve this, a general customizable indexing 

framework is necessary. To deal with the large size of intermediate data and results 

involved in the query evaluation process, complete and reliable parallel processing 

frameworks such as Hadoop MapReduce are needed. Lightweight frameworks like 

Riak MapReduce are not capable of handling queries involving analysis of large 

datasets. 

To the best of our knowledge, IndexedHBase is a first in developing a totally 

customizable indexing framework on a distributed NoSQL database. Although our 

motivation originally came from social data observatories, the customizable index-

ing framework and two-phase query evaluation strategies are generally applicable 

to all kinds of applications. There are four directions that we can work on in the 

future:  

First, our current distributed streaming data loading strategy is simple and does 

not take failure recovery of data loaders into consideration. Building a fault tolerant 

streaming data loading mechanism with a more sophisticated data distribution 

framework will be a major part of our future work. 

Secondly, we will try to further improve the efficiency of the parallel query eval-

uation strategy by taking data locality into consideration. 

Thirdly, another major part of our future work is to add support for spatial queries 

by inferring and indexing spatial information contained in tweets. Thanks to the 

batch index building mechanism supported by IndexedHBase, adding spatial indi-

ces can be done efficient without completely reloading the original dataset. 

Finally, we will try to integrate IndexedHBase with Hive [20] to provide a SQL-

like data operation interface for Truthy users. How to make the customized index 

structures visible and useful to the query execution engine in Hive will be an inter-

esting research issue to explore. 
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